5,864 research outputs found

    The inner radio jet region and the complex environment of SS433

    Get PDF
    We present multi-frequency VLBA+VLA observations of SS433 at 1.6, 5 and 15 GHz. These observations provide the highest angular resolution radio spectral index maps ever made for this object. Motion of the components of SS433 during the observation is detected. In addition to the usual VLBI jet structure, we detect two radio components in the system at an anomalous position angle. These newly discovered radio emitting regions might be related to a wind-like equatorial outflow or to an extension of the accretion disk. We show that the radio core component is bifurcated with a clear gap between the eastern and western wings of emission. Modelfitting of the precessing jets and the moving knots of SS433 shows that the kinematic centre -- i.e. the binary -- is in the gap between the western and eastern radio core components. Spectral properties and observed core position shifts suggest that we see a combined effect of synchrotron self-absorption and external free-free absorption in the innermost AU-scale region of the source. The spatial distribution of the ionized matter is probably not spherically symmetric around the binary, but could be disk-like.Comment: Accepted for publication by Astronomy and Astrophysic

    Molecular footprint of drug-selective pressure in a human immunodeficiency virus transmission chain

    Get PDF
    Known human immunodeficiency virus (HIV) transmission histories are invaluable models for investigating the evolutionary and transmission dynamics of the virus and to assess the accuracy of phylogenetic reconstructions. Here we have characterized an HIV-1 transmission chain consisting of nine infected patients, almost all of whom were treated with antiviral drugs at later stages of infection. Partial pol and env gp41 regions of the HIV genome were directly sequenced from plasma viral RNA for at least one sample from each patient. Phylogenetic analyses in pol using likelihood methods inferred an evolutionary history not fully compatible with the known transmission history. This could be attributed to parallel evolution of drug resistance mutations resulting in the incorrect clustering of multidrug-resistant virus. On the other hand, a fully compatible phylogenetic tree was reconstructed from the env sequences. We were able to identify and quantify the molecular footprint of drug-selective pressure in pol using maximum likelihood inference under different codon substitution models. An increased fixation rate of mutations in the HIV population of the multidrug-resistant patient was demonstrated using molecular clock modeling. We show that molecular evolutionary analyses, guided by a known transmission history, can reveal the presence of confounding factors like natural selection and caution should be taken when accurate descriptions of HIV evolution are required.status: publishe

    Kinematics of parsec-scale structures in AGN: the 2cm VLBA Survey

    Get PDF
    We are investigating the kinematics of jets in active galactic nuclei on parsec scales by studying a representative population of sources. This study is being carried out using the Very Long Baseline Array at 15 GHz, with more than 800 images taken since 1994. In this contribution we present an overview of the diversity of kinematics for a complete sample of sources.Comment: Proceedings of the 6th European VLBI Network Symposium, Ros E., Porcas R.W., Lobanov, A.P., & Zensus, J.A. (eds), MPIfR, Bonn, Germany. 2 pages, 3 figures, needs evn2002.cls style fil

    Variability and Velocity of Superluminal Sources

    Full text link
    We investigate the relation between the Doppler factor determined from variations in total flux at 22 and 37 GHz, and the apparent transverse velocity determined from VLBA observations at 2 cm. The data are consistent with the relativistic beaming theory for compact radio sources, in that the distribution of beta_{app}/delta_{var}, for 30 quasars, is roughly consistent with a Monte Carlo simulation. The intrinsic temperature appears to be ~2x10^{10} K, close to the "equipartition value" calculated by Readhead (1994). We deduce the distribution of Lorentz factors for a group of 48 sources; the values range up to about gamma=40.Comment: To be published in "Radio Astronomy at the Fringe", ASP Conf. Ser. Vol. 300, J. A. Zensus, M. H. Cohen, & E. Ros (eds.), 8 pages, 3 figures, needs rafringe.st

    Multi-band optical micro-variability observations of BL Lacertae

    Get PDF
    We have observed BL Lacertae in the B, R and I bands for 2 nights in July, 1999, and 3 nights in July, 2001. The observations resulted in almost evenly sampled light curves, with an average sampling interval of ~5 min. The source is significantly variable in all bands. On average, the variability amplitude increases from ~5% in the I band, to ~5.5% in the R and ~6.5% in the B band light curves. The rising and decaying time scales are comparable within each band, but they increase from the B, to R and I band light curves. The optical power spectrum shows a red noise component with a slope of ~ -2. Cross-correlation analysis shows that in most cases the delay between the variations in the B and I band light curves is less than ~ 0.4 hrs. The cross-correlation functions are asymmetric, implying complex delays of the I band variations with respect to the B band variations. Furthermore, in one case we find that the I band variations are significantly delayed (by ~0.2 hrs) with respect to the B band variations. We also detect significant spectral variations: the spectrum becomes steeper as the flux increases, and the flattest spectral index corresponds to the maximum B band flux. Our results imply that the fast, intra-night variations of the source correspond to perturbations of different regions in the jet which cause localized injections of relativistic particles on time scales much sorter that the average sampling interval of the light curves. The variations are controlled by the cooling and light crossing time scales, which are probably comparable.Comment: Accepted for publication in A&

    Intrinsic Brightness Temperatures of AGN Jets

    Get PDF
    We present a new method for studying the intrinsic brightness temperatures of the parsec-scale jet cores of Active Galactic Nuclei (AGN). Our method uses observed superluminal motions and observed brightness temperatures for a large sample of AGN to constrain the characteristic intrinsic brightness temperature of the sample as a whole. To study changes in intrinsic brightness temperature, we assume that the Doppler factors of individual jets are constant in time as justified by their relatively small changes in observed flux density. We find that in their median-low brightness temperature state, the sources in our sample have a narrow range of intrinsic brightness temperatures centered on a characteristic temperature, T_int = 3 x 10^10 K, which is close to the value expected for equipartition, when the energy in the radiating particles equals the energy stored in the magnetic fields. However, in their maximum brightness state, we find that sources in our sample have a characteristic intrinsic brightness temperature greater than 2 x 10^11 K, which is well in excess of the equipartition temperature. In this state, we estimate the energy in radiating particles exceeds the energy in the magnetic field by a factor of ~ 10^5. We suggest that the excess of particle energy when sources are in their maximum brightness state is due to injection or acceleration of particles at the base of the jet. Our results suggest that the common method of estimating jet Doppler factors by using a single measurement of observed brightness temperature and/or the assumption of equipartition may lead to large scatter or systematic errors in the derived values.Comment: 4 pages, 2 figures, Accepted to Appear in ApJ Letter

    Doppler Boosting, Superluminal Motion, and the Kinematics of AGN Jets

    Full text link
    We discuss results from a decade long program to study the fine-scale structure and the kinematics of relativistic AGN jets with the aim of better understanding the acceleration and collimation of the relativistic plasma forming AGN jets. From the observed distribution of brightness temperature, apparent velocity, flux density, time variability, and apparent luminosity, the intrinsic properties of the jets including Lorentz factor, luminosity, orientation, and brightness temperature are discussed. Special attention is given to the jet in M87, which has been studied over a wide range of wavelengths and which, due to its proximity, is observed with excellent spatial resolution. Most radio jets appear quite linear, but we also observe curved non-linear jets and non-radial motions. Sometimes, different features in a given jet appear to follow the same curved path but there is evidence for ballistic trajectories as well. The data are best fit with a distribution of Lorentz factors extending up to gamma ~30 and intrinsic luminosity up to ~10^26 W/Hz. In general, gamma-ray quasars may have somewhat larger Lorentz factors than non gamma-ray quasars. Initially the observed brightness temperature near the base of the jet extend up to ~5x10^13 K which is well in excess of the inverse Compton limit and corresponds to a large excess of particle energy over magnetic energy. However, more typically, the observed brightness temperatures are ~2x10^11 K, i.e., closer to equipartition.Comment: 10 pages, 12 color figures; proceedings of the 5th Stromlo Symposium: Disks, Winds, and Jets - from Planets to Quasars; accepted in Astrophysics & Space Scienc

    INTEGRAL observations of SS433, a supercritically accreting microquasar with hard spectrum

    Full text link
    Observations of SS433 by INTEGRAL carried out in March -- May 2003 are presented. SS433 is evidently detected on the INTEGRAL images of the corresponding sky region in the energy bands 25-50 and 50-100 keV. The precessional variability of the hard X-ray flux is clearly seen. The X-ray eclipse caused by the binary orbital motion is also detected. A possible origin of the hard continuum is briefly discussed.Comment: 5 pages, 6 figures. Accepted to A&A INTEGRAL special volum

    MOJAVE: monitoring of jets in active galactic nuclei with VLBA experiments. V. Multi-epoch VLBA images

    Get PDF
    We present images from a long-term program (MOJAVE: Monitoring of Jets in active galactic nuclei (AGNs) with VLBA Experiments) to survey the structure and evolution of parsec-scale jet phenomena associated with bright radio-loud active galaxies in the northern sky. The observations consist of 2424 15 GHz Very Long Baseline Array (VLBA) images of a complete flux-density-limited sample of 135 AGNs above declination –20°, spanning the period 1994 August to 2007 September. These data were acquired as part of the MOJAVE and 2 cm Survey programs, and from the VLBA archive. The sample-selection criteria are based on multi-epoch parsec-scale (VLBA) flux density, and heavily favor highly variable and compact blazars. The sample includes nearly all the most prominent blazars in the northern sky, and is well suited for statistical analysis and comparison with studies at other wavelengths. Our multi-epoch and stacked-epoch images show 94% of the sample to have apparent one-sided jet morphologies, most likely due to the effects of relativistic beaming. Of the remaining sources, five have two-sided parsec-scale jets, and three are effectively unresolved by the VLBA at 15 GHz, with essentially all of the flux density contained within a few tenths of a milliarcsecond
    corecore